ТРЕБУХОВ АЛЕКСЕЙ ВЛАДИМИРОВИЧ

КЕТОЗ КОРОВ И ТЕЛЯТ

(патогенетические особенности, методы диагностики и прогнозирования)

06.02.01 – диагностика болезней и терапия животных, патология, онкология и морфология животных

АВТОРЕФЕРАТ

диссертации на соискание ученой степени доктора ветеринарных наук

Работа выполнена на кафедре терапии и фармакологии факультета ветеринарной медицины Федерального государственного бюджетного образовательного учреждения высшего образования «Алтайский государственный аграрный университет»

Научный консультант: Эленшлегер Андрей Андреевич

доктор ветеринарных наук, профессор

Официальные оппоненты: Гертман Александр Михайлович

доктор ветеринарных наук, профессор, ФГБОУ ВО «Южно-Уральский государственный аграрный университет», заведующий кафедрой диагностики и терапии

Калюжный Иван Исаевич

доктор ветеринарных наук, профессор, ФГБОУ ВО «Саратовский государственный аграрный университет им. Н.И. Вавилова», профессор кафедры терапии, акушерства и фармакологии

Шкуратова Ирина Алексеевна

доктор ветеринарных наук, профессор, ФГБНУ «Уральский научно-исследовательский ветеринарный институт», директор

Ведущая организация: ФГБОУ ВО «Санкт-Петербургская государственная академия ветеринарной медицины»

Защита состоится 30 марта 2018 г. в 10^{00} часов на заседании диссертационного совета Д 220.002.02, созданного на базе ФГБОУ ВО «Алтайский государственный аграрный университет», по адресу: 656049, Алтайский край, г. Барнаул, пр. Красноармейский, 98, тел./факс 8(3852) 31-39-70, e-mail: fodorovag@mail.ru.

C	диссертацией	ОНЖОМ	ознакомиться	В	библиотеке	ФГБОУ	BO
«Алта	айский государс	твенный	аграрный униве	рси	тет» и на сайт	re	

Автореферат разослан «»	2017 г
-------------------------	--------

Ученый секретарь диссертационного совета

Фёдорова Галина Анатольевна

1. ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Интенсификация промышленного животноводства нередко приводит к чрезмерному функциональному напряжению организма животного, в ряде случаев функционирующему «на грани патологии» (Кондрахин И. П., 1998). Данное обстоятельство создает условия для развития заболеваний обмена веществ. При этом нарушения обмена веществ одного вида встречается крайне редко, а наиболее часто отмечается комбинация из двух видов и более. Так, патология липидного обмена сопровождается нарушением углеводного и белкового обмена.

Болезни обмена веществ чаще встречаются у животных во время периодов пикового физиологического напряжения организма, к которым относятся беременность, роды, лактация, рост (Уша Б. В., 2004; Воронин Е.С., 2006). Следует отметить, что нарушение липидного обмена нередко сопровождается возникновением кетогенной ситуации с последующем развитием кетоза.

Кетоз крупного рогатого скота чаще всего регистрируется в конце зимне-стойлового периода, и отмечаться у одних и тех же коров ежегодно, ущерб причиняя значительный экономический животноводческим хозяйствам. При этом в другие технологические периоды, например в пастбищный – клинически может не проявляться. В результате этого возникает необходимость раннего выявления больных кетозом коров в те технологического процесса, периоды В которых кетоз протекает субклинической форме И наиболее часто остается не замеченным ветеринарными специалистами.

В этой связи разработка методов ранней диагностики кетоза, изучение особенностей проявления его клинической картины, а именно, синдромальной выраженности, имеет важное теоретическое и практическое значение.

Кроме того, изучение степени влияния нарушения гомеостаза больных кетозом коров-матерей на гомеостаз рожденных от них телят, с целью

разработки ранних диагностических тестов, позволяющих спрогнозировать направленность нарушения обмена у полученных телят, также актуально.

Степень разработанности темы. Изучению нарушения обмена веществ, характерного для кетоза крупного рогатого скота, посвящены многочисленные работы отечественных и зарубежных авторов, свидетельствующие о важности и необходимости постоянного расширения и углубления знаний в области данной патологии. Наиболее значимый вклад в изучения кетоза крупного рогатого скота внесли Луцкий Д.Я., Кондрахин И.П., Жаров А.В., Ковалев С.П., Васильев М.Ф., Herrler K., Metzger D. и др.

Несмотря на это, вопросы ранней диагностики кетоза, изучение взаимосвязи изменения обмена веществ у коров-матерей и рожденных от них телят, прогнозирование развития данного заболевания в доступной нам литературе освещены недостаточно.

Цель и задачи исследований. Целью наших исследований явилось изучение особенностей проявления, течения и изменения биохимического статуса при кетозе у коров-матерей и рожденных от них телят, а также разработать методы диагностики и прогнозирования заболевания.

В задачи исследования входило:

- 1. Выявить взаимосвязь проявления основных синдромов кетоза от уровня кетоновых тел и их фракций в крови у коров.
- 2. Изучить белковый, углеводный, липидный и минеральный обмен у больных кетозом коров до и после отела.
- 3. Изучить белковый, углеводный, липидный и минеральный обмен у телят, рожденных от больных кетозом коров.
- 4. Разработать критерий-тест, позволяющий провести оценку липидного обмена у новорожденных телят по показателям липидного обмена их коровматерей во время сухостоя.
 - 5. Разработать метод ранний диагностики кетоза коров.
- 6. Разработать метод математического прогнозирования уровня общих кетоновых тел в крови у коров.

Научная Впервые новизна. установленная зависимость И последовательность проявления основных синдромов кетоза у коров, от концентрации в крови кетоновых тел и их фракций, в значительной степени дополняет знания особенностей генеза заболевания. Впервые проведена комплексная оценка углеводного, белкового, жирового и минерального обмена у больных кетозом коров-матерей до и после отела, а также у рожденных от них телят по аналогичным показателям. Установлена динамика изменения биохимического статуса до и после отела у коровматерей и у рожденных от них телят; предложены критерии диагностики нарушения обмена у коров до и после отела. Впервые разработан критерийтест, позволяющий прогнозировать состояние липидного обмена у телят до их рождения по соответствующим биохимическим параметрам коровматерей. Предложен метод раннего прогнозирования развития кетоза у коров, основанный на сезонных изменениях кетоновых тел в крови. Предложена классификация кетоза по 7 принципам.

Разработан способ математического прогнозирования уровня кетоновых тел в крови, заявка на изобретение №2016135373/14 (055377) от 30.08.2016. Разработаны программы для ЭВМ «Математический экспресс-тест определения кетоновых тел в крови», свид. №2017660705 от 25.09.2017, «Нейросетевой экспресс-тест», свид. №2005612065 от 12.08.2005, которые подтверждают приоритет и новизну предложенных методов определения кетоновых тел в крови.

Теоретическая и практическая значимость работы заключается в том, что впервые было определено соотношение фракций кетоновых тел в крови больных кетозом коров, позволяющее прогнозировать развитие данной патологии. Получены значения основных биохимических показателей, определяемых в ходе стандартной диспансеризации, отражающие все обмены (углеводный, белковый, основные веществ липидный минеральный), у коров-матерей при кетозе до и после отела и полученных от Продемонстрирована доказана высокой них телят. И степенью

достоверности взаимосвязь фракционных изменений кетоновых тел в крови больных кетозом коров и степени синдромальной выраженности данной патологии.

Результаты исследований реализованы в 2 методических рекомендациях: «Диагностика, лечение и профилактика кетоза коров» (одобрены Министерством сельского хозяйства Алтайского края 31.05.2017 г.), «Диагностика, лечение и профилактика субклинического кетоза коров» (утв. научно-техническим советом Управления ветеринарии администрации Алтайского края протокол № 3 от 07.06.2005), а также в монографии «Кетоз молочных коров».

Изложенные в рекомендациях методы диагностики, прогнозирования кетоза у коров и телят, критерии оценки клинико-биохимического статуса коров при нарушении обмена веществ до и после отела, авторские методы определения кетоновых тел в крови коров внедрены в производственную деятельность AO учхоз «Пригородное», в производственную и научную деятельность ФГБНУ «Алтайского научно-исследовательского института животноводства и ветеринарии», а также в научно-производственной деятельности Института экспериментальной ветеринарии Сибири и Дальнего Востока Сибирского федерального научного центра агробиотехнологии РАН и используются при выполнении государственного задания: «Разработать современные средства и методы лечения и профилактики болезни животных и микро- макроэлементозов с использованием методов нанобиотехнологии и оценить их эффективность в современных условиях животноводства», при оказании услуг по диагностике и профилактике незаразных болезней животных сельхоз предприятиям Новосибирской, Томской и Кемеровской областей, а также используются в учебном процессе ФГБОУ ВО СПбГАВМ, ФГБОУ ВО Омский ГАУ, ФГБОУ ВО Новосибирский ГАУ.

Результаты диссертационной работы, а именно, патогенетические особенности кетоза выражающиеся в зависимости и последовательности проявления основных синдромов кетоза у коров от концентрации кетоновых

тел и их фракций; особенности клинико-биохимических изменений в организме при данной патологии обмена у коров до и после отела и значения их оценки; методы ранней диагностики, прогнозирования кетоза коров и липидного обмена у телят; метод математического моделирования кетоновых тел в крови; предложенная классификация кетоза используется в учебном процессе при подготовке научных сотрудников и ветеринарных врачей в НАО «Казахский национальный аграрный университет» (Республика Казахстан), ФГБОУ ВО СПбГАВМ, ФГБОУ ВО Омский ГАУ, ФГБОУ ВО Новосибирский ГАУ, ФГБОУ ВО Бурятская ГСХА, ФГБОУ ВО Дальневосточный ГАУ, ФГБОУ ВО Алтайский ГАУ.

Методология и методы исследования.

Методология проведённых исследований базировалась на системном изучении объектов исследования, анализе и обобщении полученных результатов. Объектом исследования являлся крупный рогатый скот, в частности коровы и телята. Предметом исследования – клинический статус коров и биохимический статус крови коров и телят. Для получения объективных работе данных использовался комплекс методов, клинические, биохимические, включающих: статистические методы обработки данных.

Положения, выносимые на защиту.

- 1. Зависимость синдромальной выраженности кетоза от концентрации кетоновых тел и их фракций в крови у коров.
- 2. Биохимические показатели белкового, углеводного, липидного и минерального обмена при кетозе у коров до и после отела.
- 3. Биохимические показатели белкового, углеводного, липидного и минерального обмена у телят, рожденных от больных кетозом коровматерей.
- 4. Сезонные колебания уровня кетоновых тел в крови больных кетозом коров.

Степень достоверности и апробации результатов. Достоверность результатов обусловлена большим объемом экспериментального материала, использованием современных методов и методик исследования, а также статистической обработкой данных.

Материалы диссертации доложены на Международной научно практической конференции, посвященной 150-летию ветеринарной службы Оренбуржья (2003); юбилейной научно-практической конференции: к 50летию факультета ветеринарной медицины АГАУ, 100-летию со дня рождения проф. И.С. Ржаницыной (г. Барнаул, 2012); Международной практической конференции «Актуальные научно вопросы гастроэнтерологии электрофизиологии» Улан-Удэ, И (Γ. 2016); Международной научно-практической конференции «Аграрная наука – сельскому хозяйству» (г. Барнаул, 2009; 2017). Основные положения диссертации доложены и одобрены в отчетах НИР кафедры терапии и фармакологии факультета ветеринарной медицины Алтайский ГАУ 2003-2015 годах.

Публикация материалов исследований. По материалам диссертации опубликовано 26 научных статей, в том числе 17— в изданиях, рекомендованных ВАК Минобрнауки РФ; 2 свидетельства о регистрации программ для ЭВМ, монография и 2 методических рекомендации.

Личный соискателя. Представленная вклад работа, является результатом исследований, проведенных автором лично с 2003 по 2015 год. Автором выполнен основной объем исследований, самостоятельно задачи исследований, проведен анализ научной поставлены цели и литературы и полученных данных, сформулированы основные положения диссертации, составляющие её новизну и практическую значимость.

При заборе крови у животных значительную помощь оказали О.Г. Казакова, Н.А. Пащенко, Ан. В. Требухов.

Объем и структура диссертации. Диссертация изложена на 298 страницах компьютерного текста, иллюстрированная 35 таблицами, 43

рисунками и состоит из введения, основной части (обзора литературы, собственных исследований, обсуждения результатов), заключения, списка сокращений и условных обозначений, списка литературы (287 источников, в т.ч. 67 иностранных), приложений.

2. ОСНОВНАЯ ЧАСТЬ

2.1. Материалы и методы исследований

Клинико-экспериментальные исследования проводили в ОАО учхоз «Пригородное» ФГБОУ ВО Алтайского ГАУ, г. Барнаула в 2003 – 2015 г.г. Исследования осуществлялись на коровах-аналогах в возрасте 6-7 лет и рожденных от них телятах. Критериями оценки результатов исследования в зависимости от задач конкретного научно-хозяйственного опыта служили клинические статус и (или) биохимические статус крови, а также продолжительность и течение болезни.

Первый научно-хозяйственный опыт проводился с целью изучения взаимосвязи основных синдромов кетоза коров от уровня кетоновых тел в их крови. Исследование проводились на коровах-аналогах (n=77) в последние месяцы зимне-стойлового периода (март, апрель) и в начале следующего зимне-стойлового периода (октябрь).

Диагноз кетоз ставился на основании лабораторных исследований при концентрации общих кетоновых тел (ОКТ) в крови выше 1,033 ммоль/л и соотношения их фракций (бета-оксимасляной кислоты (ВН) и ацетона с ацетоуксусной кислотой (АсАс) меньшем, чем 6:1. На основании полученных результатов было сформировано 3 группы коров: первая — животные, с ацетонемическим синдромом, вторая — животные с преимущественным проявлением гастроэнтерального синдрома, третья — с преимущественным проявлением гепатотоксического синдрома.

Второй научно-хозяйственный опыт проводился с целью комплексного изучения биохимического статуса (белкового, углеводного, липидного и минерального обмена) у больных кетозом коров до и после отела. Для этого

было сформировано две группы коров-аналогов, по 20 голов в каждой: контрольная — клинически здоровые, опытная — больные кетозом коровы. Формирование групп осуществлялось по мере поступления животных. Диагноз кетоз основывался на уровне кетоновых тел и соотношение их фракций в крови, аналогично методике применяемой в первом научно-хозяйственном опыте. Оценка биохимического статуса у исследуемых групп животных проводилась по результатам исследования крови 4-х кратно: за 2 месяц до отела, за месяц до отела, через 10 дней после отела, через месяц после отела.

Третий научно-хозяйственный опыт проводился с целью комплексного изучения биохимического статуса (белкового, углеводного, липидного и минерального обмена) у телят, полученных от больных кетозом коров. Для этого были сформированы 2 группы телят. Заполнение групп осуществлялось по мере рождения телят от коров-матерей второго научно-хозяйственного опыта. Телята, поступающие от больных кетозом коров, считались опытными (n=14), а телята от здоровых коров – контрольными (n=14). Оценка уровня биохимического статуса телят обеих групп осуществлялась по результатам 3-х кратного биохимического исследования крови: через 3, 10 дней и месяца после рождения.

Четвертый научно-хозяйственный опыт проводился для выявления критериев ранней диагностики кетоза. Исследования проводились на коровах-аналогах (n=44) в начале (октябрь) и конце (апрель) зимнестойлового периода в течение нескольких лет (2006-2007; 2011-2012; 2014-2015).

При клиническом исследовании учитывали результаты общих исследований, при биохимическом – в крови определяли: ОКТ, ВН, АсАс, глюкозу, резервную щелочность крови, общий белок, белковые фракции (альбумины, α-, β-, γ-глобулины), холестерин, триглицериды, свободные жирные кислоты (НЭЖК), фосфолипиды, общий кальций, неорганический фосфор, витамин А, каротин.

Биохимические показатели цельной крови и её сыворотки исследовали в Алтайской краевой ветеринарной лаборатории и клинической лаборатории кафедры терапии и фармакологии ФВМ Алтайский ГАУ. Забор крови осуществлялся из яремной вены в утренние часы до кормления.

Статистическая обработка полученных данных осуществлялась пакетом прикладных программ Microsoft Office 2007 (Excel), StatSoft Statistica 6.1 на ЭВМ Intel Core i3. Все данные в работе подвергнуты статистической обработке и представлены в виде среднего (М), ошибки среднего (т), расчет которых проводился по общепринятым формулам. На графиках указан доверительный интервал $\pm \Delta M$. Отличие определялись по критериям Стьюдента для равнозначных выборок (при Р<0,05).

2.2. Результаты исследований

2.2.1. Классификация кетоза крупного рогатого скота

На основании литературных данных и результатов собственных исследований, нами предложена классификация кетоза крупного рогатого скота по 7 принципам. Классификация кетоза крупного рогатого скота представлена в таблице 1.

Таблица 1 – Классификация кетоза крупного рогатого скота по Требухову А.В., Эленшлегеру А.А.

Принцип классификации	Форма		
По масштабности	1. Массовый		
	1.1.Естественный (условия окружающей среды)		
	1.2. Искусственный (условия фермы, пастбища		
	антропогенного происхождения, специально		
	подготовленные корма и др.)		
	2. Индивидуальный		
По течению	Острый		
	Хронический		
По происхождению	Первичный		
-	Вторичный		
По этиологии	1. На почве голодания		
	1.1. Полного		

	1.2. Частичного		
	- нарушение сахара-протеинового отношения		
	в рационе;		
	- избыток низко-качественных кормов		
	(содержащих большое количество кетогенных		
	кислот);		
	- недостаток углеводов в рационе;		
	- недостаток грубых кормов;		
	- избыток белков, жиров в рационе;		
	- недостаток меди, кобальта, цинка, йода,		
	марганца, селена;		
	- избыток железа, молибдена, кальция,		
	магния, фосфора, натрия;		
	- дефицит витаминов: В, А.		
	2. Эндокринный		
	2.1. Физиологический (адаптационный)		
	2.2. Патологический		
	3. Технопатический (факторы, возникающие		
	вследствие нарушения технологии содержания и		
	эксплуатации животных)		
	4. Полифакторный		
По патогенетическому	1. Увеличение образования кетоновых тел		
принципу	вследствие повышенного поступления кетогенных		
	веществ из рубца		
	2. Увеличение образования кетоновых тел		
	вследствие стимуляции бета-окисления в клетках		
	организма		
	3. Смешанный		
По степени выраженности	Субклинический		
клинической картины	Клинический		
По синдромальной	1. Ацетонемический		
выраженности	2. Гастроэнтеральный		
	3. Гепатотоксический		
	4. Невротический		
	5. Полисиндромальный		

2.2.2. Взаимосвязь основных синдромов кетоза и уровня кетоновых тел в крови коров

В ходе диспансеризации 3379 голов продуктивного стада проводимой в течение нескольких лет с 2003 по 2015 г.г. в конце каждого зимне-стойлового периода (март-апрель) в ОАО учхозе «Пригородное» ФГБОУ ВО Алтайский ГАУ по схеме И. Г. Шарабрина (1975), было установлено, что внутренние незаразные болезни составляют 43 % животных, в т.ч. нарушения обмена

веществ у 33,25 %. При лабораторном исследовании крови, мочи и молока были выявлены признаки нарушения обмена веществ характерные для кетоза коров. В крови было установлено повышение ОКТ до 2,45±0,14 ммоль/л, АсАс – 0,93±0,06 ммоль/л, ВН – 1,52±0,1 ммоль/л. Снижения концентрации глюкозы до 2,19±0,12 ммоль/л, резервной щелочности до 17,81±0,9 ммоль/л, а также ВН/АсАс до 1,63±0,23. Кроме того, установлены признаки нарушение минерального обмена характеризовавшиеся снижением в крови ниже физиологического уровня содержания марганца, цинка, кобальта и меди, соответственно на 85, 74,6, 33 и 32,5 %.

По результатам клинико-лабораторных исследований больных кетозом коров разделили на три группы: с преимущественным развитием ацетонемического, гастроэнтерального и гепатотоксического синдрома.

Ацетонемический синдром первом (март) при исследовании сопровождался некоторыми неспецифическими симптомами: незначительным снижением аппетита, учащением частоты дыхательных движений и сердечных сокращений, бледностью слизистых оболочек. Данный синдром характеризовался повышенным уровнем ОКТ (3,22±0,28) ммоль/л), BH $(2,36\pm0,19 \text{ ммоль/л})$, пониженным — AcAc $(0,85\pm0,06 \text{ ммоль/л})$ и наибольшим значением коэффициента BH/AcAc (2,78±0,25) относительно других синдромов. Концентрация глюкозы и щелочного резерва крови при данном синдроме была ниже физиологических границ и занимала промежуточные значения среди синдромов.

Гепатотоксический синдром характеризовался увеличением и смешением перкуторных границ печени, бледностью слизистых с желтушным оттенком у всех коров с данным синдромом. Болезненностью области печеночного притупления. Со стороны сердечнососудистой системы отмечали: тахикардию, ослабление сердечного толчка и тонов сердца, которые отмечали у 50 % животных. Пульс ритмичный, умеренный, по напряжению сосудистой стенки — мягкий, по величине пульсовой волны — малый. Концентрация ОКТ составляла 2,27±0,22 ммоль/л, что было ниже уровня

данного показателя коров с ацетонемическим синдромом — на 29 %, и с гастроэнтеральным — на 20,4 %. Содержание АсАс и ВН в крови коров с данным синдромом соответственно составило 1,06±0,09 ммоль/л и 1,21±0,09 ммоль/л. При этом коэффициент ВН/АсАс был наименьшим среди наблюдаемых синдромов — 1,14±0,09. Уровень глюкозы и щелочного резерва крови коров, напротив, был наибольшим среди анализируемых синдромов.

Гастроэнтеральный синдром проявлялся в замедлении жвачки, снижении аппетита и гипотонией преджелудков у всех животных (100%). Гипотония кишечника наблюдалась у 67 %, повышенная перистальтика кишечника с наличием в каловых массах слизи, неприятного (зловонного) запаха – у 33 % животных. При аускультации тонкого отдела кишечника выявлялись звуки крепитации и переливания, в тонком отделе отмечали значительное скопление газов. При этом, в крови уровень ОКТ составлял 2,85±0,24 ммоль/л, AcAc – 1,16±0,09 ммоль/л, BH – 1,69±0,14 ммоль/л, а значения коэффициента BH/AcAc, занимало промежуточное положение среди синдромов – 1,46±0,21. Щелочной резерв крови при данном синдроме был минимальным относительно других синдромов и составлял 13,18±1,19 ммоль/л. Уровень глюкозы в крови коров с гастроэнтеральным синдромом, был ниже аналогичного показателя коров с ацетонемическим синдромом на 21 % (P<0,01), и с гепатотоксическим – на 26,8 % (P<0,01),

Нами установлена последовательность развитие синдромов кетоза. При втором исследовании отмечали увеличение числа коров с гепатотоксическим синдромом за счет коров, у которых при первом исследовании отмечали гастроэнтеральный синдром, а увеличение количества коров с гастроэнтеральным – за счет коров с ацетонемическим синдромом.

Биохимический анализ крови выявил сходные с первым исследованием соотношение кетоновых тел и их фракций между синдромами. Результаты биохимического исследования крови при втором исследовании представлены в таблице 2.

Таблица 2 – Биохимические показатели крови коров (второе исследование, М±m. n=77)

	Синдром				
Показатели	Ацетонемический,	Гастроэнтеральный,	Гепатотоксический,		
	n=33	n=28	n=16		
ОКТ, ммоль/л	2,9±0,19	2,69±0,23	1,99±0,18		
АсАс, ммоль/л	0,91±0,07	1,22±0,11	0,96±0,09		
ВН, ммоль/л	1,98±0,18	1,47±0,13	1,03±0,09		
BH/AcAc	2,18±0,18	1,21±0,11	1,07±0,08		
Глюкоза, ммоль/л	1,67±0,15	1,75 ±0,15	2,34±0,22		
Щелочной резерв, ммоль/л	13,22±1,17	14,46±1,32	18,26±1,62		

Из таблицы 2 видно, что при ацетонемическом синдроме отмечается наибольший уровень OKT, BH, BH/AcAc наименьший AcAc. Гепатотоксический синдром сопровождался наименьшими значениями ОКТ, ВН, ВН/АсАс. При гастроэнтеральном синдроме нами были выявлены промежуточные концентрации кетоновых тел и их фракций относительно других синдромов, в т.ч. АсАс (по коэффициенту ВН/АсАс). Уровень глюкозы и щелочного резерва крови был выше в крови коров с гепатотоксическим синдромом относительно аналогов с ацетонемическим синдромом соответственно на 40 % и 38 %, с гастроэнтеральным – на 34 % и 26 %. При этом достоверных различий между концентрацией глюкозы и щелочного резерва крови у коров с ацетонемическим и гастроэнтеральным синдромами в этот период установлено не было.

При третьем исследовании (октябрь), в начале следующего зимнестойлового периода, у большинства исследуемых коров отсутствовали характерные симптомы отмечаемые ранее. Установлено, что у коров, у которых при втором исследовании отмечали гастроэнтеральный и

гепатотоксический синдром, при третьем исследование отмечали ацетонемический синдром у всех животных с гастроэнтеральным синдромом и у 62,5 % с гепатотоксическим синдромом. При этом у оставшихся коров с гепатотоксическим синдромом (37,5 %, n=6) отмечали лишь некоторые симптомы данного синдрома: увеличение границ печени, её болезненность, бледность слизистых оболочек. В то время как у 48,5 % коров, у которых при втором исследовании отмечали ацетонемический синдром, при третьем исследовании признаки какого либо синдрома отсутствовали и животные считались клинически здоровыми. Результаты биохимического исследования крови при третьем исследовании представлены в таблице 3.

Таблица 3 – Биохимические показатели крови коров (третье исследование, М±m. n=77)

	Синдром*			
Показатели	Ацетонемический,	Гастроэнтеральный,	Гепатотоксический,	
	n=33	n=28	n=16	
ОКТ, ммоль/л	$0,84\pm0,07$	$0,75 \pm 0,07$	1,17±0,09	
АсАс, ммоль/л	0,14±0,01	0,13±0,011	0,26±0,02	
ВН, ммоль/л	0,71±0,07	0,62±0,05	1,03±0,07	
BH/AcAc	5,1±0,44	4,77±0,33	3,4±0,26	
Глюкоза,	2,85±0,26	2,78±0,25	2,83±0,27	
ммоль/л				
Щелочной	23,5±1,89	23,1±2,16	21,39±1,92	
резерв, ммоль/л	,	,,		

^{*}Примечание — формирование групп коров по синдромальной выраженности кетоза представлено исходя из групп, сформированных при втором исследовании.

Из таблицы 3 видно, что при третьем исследовании, которому предшествовало стойлово-выгульное содержания, основные биохимические показатели находились в пределах физиологических значений у всех исследуемых коров независимо от ранее отмечаемого синдрома, за

исключением концентрации AcAc у коров с гепатоксическим синдромом, которая была выше физиологических границ и значительно выше значений отмечаемых при других синдромах в этот период. Так, при третьем исследовании уровень AcAc в крови коров с гепатотоксическим синдромом был выше уровня данного показателя в крови коров с ацетонемическим синдромом в 1,9 раза, а с гастроэнтеральным – в 2 раза.

Более того, уровень данной фракции (AcAc) был наибольшим у коров с гепатотокическим синдромом относительно коров с другими синдромами на протяжении всего периода исследований (по коэффициенту ВН/АсАс). При исследовании коэффициент ВН/АсАс при гепатотоксическом коэффициента BH/AcAc синдроме был ниже значений при гастроэнтеральном – на 22 %, а при ацетонемическом – в 2,4 раза. При втором исследовании относительно гастроэнтерального и ацетонемического синдрома соответственно – на 11,6 % и в 2 раза. При третьем исследовании значение коэффициента ВН/АсАс у коров с гепатотоксическим синдромом было ниже аналогичного коэффициента ВН/АсАс гастроэнтерального – на 29% и ацетонемического – на 33 %.

Концентрация глюкозы и щелочного резерва в крови у коров с ацетонемическим, гастроэнтеральным и гепатотоксическим синдромом в этот период не имела достоверных различий.

2.2.3 Биохимический статус (белковый, углеводный, липидный и минеральный обмен) у больных кетозом коров до и после отела

Кетоз крупного рогатого скота сопровождается значительным повышением в крови уровня кетоновых тел и их фракций. Результаты исследования кетоновых тел и их фракций в крови коров представлены на рисунке 1.

Из рисунка 1 видно, что до отела в крови коров опытной группы значения всех основных показателей кетогенеза (ОКТ, AcAc, BH) понижались и были достоверно выше аналогичных значений контрольной группы за 2 месяца до

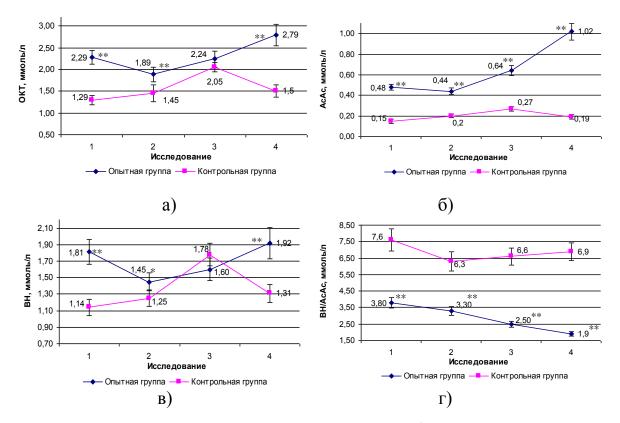


Рисунок 1 - Концентрация кетоновых тел и их фракций в крови коров. Примечание: а) общие кетоновые тела (ОКТ); б) ацетоуксусная кислота с ацетоном (AcAc); в) бета-оксимасляная кислота (ВН); г) – коэффициент ВН/AcAc; достоверно по отношению к контрольной группе: * -при Р<0,01, ** -при Р<0,001.

отела (первое исследование) соответственно в 1,8 раза (P<0,001), в 3,2 раза (P<0,001), в 1,6 раза (P<0,001), а за месяц до отела (второе исследование) были выше — на 30 % (P<0,001), в 2,2 раза (P<0,001) и на 16 % (P<0,01) соответственно.

После отела концентрация ОКТ, AcAc, BH повышалась и, по-прежнему, была выше уровня анализируемых показателей коров контрольной группы до конца исследования. Так, спустя месяц после отела (четвертое исследование) содержание ОКТ в крови коров опытной группы было выше уровня аналогов контрольной группы в 1,8 раза (P<0,001), AcAc – в 5,4 раза (P<0,001), BH – в 1,5 раза (P<0,001).

Коэффициент отношения ВН/АсАс в крови коров опытной группы в течение всего опытного периода понижался, в то время, как в контрольной группе он изменялся незначительно и находился в пределах физиологических границ. Среднегрупповые различия были достоверно ниже в опытной группе относительно контрольной до отела: при первом исследовании – в 2 раза (P<0,001), при втором – в 1,9 раза (P<0,001). После отела при третьем исследовании – в 2,6 раза (P<0,001) и при четвертом – в 3,6 раза (P<0,001).

Концентрация НЭЖК и триглицеридов в крови больных кетозом коров в течение всего исследования превышала аналогичные параметры контрольной группы. При первом исследовании содержание НЭЖК в крови коров опытной группы составила 0.99 ± 0.09 ммоль/л и было больше аналогичного значения контрольной группы в 2,5 раза (Р<0,01). При втором исследовании содержание НЭЖК в крови коров опытной группы было выше аналогов контрольной в 4 раза (Р<0,01). После отела, при третьем исследовании содержание НЭЖК в крови коров опытной группы повысилось до 1.99 ± 0.16 ммоль/л, что было в 1,7 раза (P < 0,01) больше по сравнению со вторым исследованием и в 4 раза (P<0,01) выше аналогичного показателя контроля в этот период. При четвертом исследовании (спустя месяц после отела), концентрация НЭЖК в крови коров опытной группы была максимальной, и составляла $2,67 \pm 0,24$ ммоль/л, что было больше уровня предыдущего исследования — в 1,4 раза (P<0,01), первого — в 2,7 раза (P<0,01) и значения аналогичного показателя контрольной группы в этот период в 4,5 раза (P<0,001).

До отела, концентрация триглицеридов в крови обеих групп повышалась. Так, ко второму исследованию в крови коров опытной группы, концентрация триглицеридов достигала $0,69 \pm 0,07$ ммоль/л, что было выше уровня первого исследования в 1,8 раза (P<0,01) и в 2 раза (P<0,01) больше аналогичного показателя животных контрольной группы в этот период.

После отела (при третьем исследовании) концентрация триглицеридов в крови опытной группы коров, напротив, снизилась и была ниже значения

второго исследования в 3,6 раза (P<0,01) и меньше содержания данного показателя в крови коров контрольной группы на 34,5 % (P<0,01). К четвертому исследованию содержание триглицеридов в крови опытной группы коров вновь увеличилось до 0,26 \pm 0,01 ммоль/л и превысило концентрацию аналогичного показателя контроля на 24 % (P<0,01).

Уровень фосфолипидов и холестерина в течение всего исследования в обеих группах коров был в пределах физиологических границ и имел между собой сходную динамику изменений. При этом уровень фосфолипидов в крови коров опытной группы был ниже уровня данного показателя контрольной группы в течение всего исследования, за исключением первого, при котором концентрация фосфолипидов была выше в крови опытных коров на 46 % (P<0,01). Ко второму исследованию концентрация фосфолипидов в крови животных опытной группы была ниже относительно контрольных на 18 % (P<0,05). После отела (третье исследование) среднегрупповые различия были ниже в крови опытной группы коров относительно контрольной на 44% (P<0,01), а при четвертом — на 27 % (P<0,01).

Концентрация холестерина, в отличие от фосфолипидов, в течение всего исследования была выше в крови коров опытной группы относительно контрольной. До отела при первом исследовании концентрация данного показателя в крови опытных коров была выше относительно контрольных аналогов на 7,6 %, при втором – на 35 % (P<0,05), а после отела, третье исследование – на 25 % (P<0,01), к четвертому исследованию – на 32% (P<0,01).

Содержание глюкозы в крови коров опытной группы было меньше аналогичного показателя контрольной группы, как до отела, так и после него. Так, при первом исследовании концентрация глюкозы в опытной группе составляла $2,26 \pm 0,21$ ммоль/л, что было меньше аналогичного показателя контроля на 18 % (P<0,05), а при втором исследовании — на 31 % (P<0,01). После отела среднегрупповые значения уровня глюкозы в крови коров опытной группы были ниже уровня контрольной группы при третьем

исследовании — на 16,9 % (P<0,05), а при четвертом исследовании — на 17,2% (P<0,01).

Уровень щелочного резерва в крови обеих групп животных в течение всего опытного периода имел сходную динамику изменений. При этом, в контрольной группе коров уровень щелочного резерва находился в физиологических границах и колебался в пределах $18,42\pm1,29$ ммоль/л – $19,74\pm1,58$ ммоль/л. В то время как, в опытной группе больных кетозом коров, динамика изменения щелочного резерва имела более выраженную амплитуду колебаний, а значения уровня щелочного резерва снижались ниже минимальных физиологических пределов уже при втором исследовании, составляя $17,76\pm1,4$ ммоль/л. К четвертому исследованию в крови коров опытной группы уровень щелочного резерва был наименьшим за весь опытный период, и составил $16,5\pm1,36$ ммоль/л, что ниже значения контрольной группы в этот период на 13% (P<0,05).

Содержание общего белка в крови коров, как опытной, так и контрольной групп находилось в пределах физиологических границ: в опытной группе $79,0\pm3,5$ г/л- $83,1\pm3,1$ г/л, в контрольной – $73,0\pm4,0$ г/л- $87,0\pm3,1$ г/л. При этом, при первом исследование в крови больных кетозом коров, уровень общего белка был ниже аналогичного показателя контрольной группы на 7% (P<0,05). При втором исследовании, несмотря на более низкий уровень данного показателя в крови опытных коров достоверных различий между группами отмечено не было.

После отела, содержание общего белка в крови больных кетозом коров (опытная группа) было, напротив, выше аналогов контрольной группы при третьем исследовании на 7,6 % (P<0,05), и при четвертом – на 5 %.

У больных кетозом коров, до отела (первое и второе исследование), нами установлены, изменения в белковых фракциях крови характеризовавшиеся диспротеинемией: увеличением гамма- и бета-глобулинов, при низком содержании альбуминов. Диспротеинемию при кетозе отмечали Шарабрин И.Г. и соавт. (1977), Кондрахин И.П. (1989), Анохин В.М. и соавт. (1991),

Иванов А.В. и соавт. (2000), которые связывали её с нарушением функции печени.

После отела показатели белковых фракций, как в опытной, так и контрольной группах, находились в пределах физиологических колебаний, за исключением альфа-глобулинов, уровень которых был ниже физиологических значений и колебался в опытной группе в пределах от $8,96\pm0,76$ % (третье исследование) до $10,42\pm0,96$ % (четвертое исследование), в контрольной — в пределах от $5,17\pm0,54$ % (третье исследование) до $11,86\pm1,06$ % (четвертое исследование).

Из выше изложенного можно сделать вывод, что у коров опытной группы по сравнению с аналогами контрольной группы отмечались более выраженное нарушение белково-образовательной функции печени как до отела, так и после него.

Уровень общего кальция в крови коров обеих групп был ниже физиологических пределов в течение всего периода исследований. Однако значение данного показателя в крови больных кетозом коров (опытная группа) были достоверно ниже концентрации общего кальция в крови здоровых коров в аналогичные периоды, за исключением второго исследования. Так, до отела концентрация общего кальция у больных кетозом коров была ниже уровня клинически здоровых аналогов при первом исследование на – 11 % (Р<0,05), при втором – на 7 %; после отела, при третьем исследовании – на 9,4 % (Р<0,05), при четвертом – на 6,3 %.

Концентрация неорганического фосфора, до отела (при первом и втором исследовании), была ниже в крови больных кетозом коров относительно клинически здоровых аналогов: при первом исследовании на 8,2 % и при втором — на 12,4 % (P<0,05). В тоже время, после отела (третье исследование) концентрация неорганического фосфора в крови больных кетозом коров значительно увеличилась (до $1,86 \pm 0,12$ ммоль/л) и превысила значения здоровых животных ($1,81 \pm 0,13$ ммоль/л) в этот период на 3 %. В дальнейшем концентрация данного показателя понижалась в крови коров

обеих группах и к четвертому исследованию существенно не отличалась между ними. При этом динамика понижения уровня неорганического фосфора в крови опытных коров была более интенсивна.

Таким образом, нами установлено, что при кетозе в последние месяцы общего стельности отмечается низкий уровень кальция (ниже физиологических границ) при одновременно высокой концентрации неорганического фосфора, которая снижалась к отелу. После отела отмечается незначительное повышение содержания общего кальция и резкое увеличения уровня неорганического фосфора, а в период раздоя (четвертое исследование) отмечается снижение концентрации обоих показателей ниже физиологических границ.

В ходе наших исследований установлено, что концентрация витамина A в крови больных кетозом коров при первом исследовании составляла 1,07 ± 0,08 мкмоль/л и превышала значения аналогичного показателя здоровых коров на 16,3 % (P<0,05), но уже при втором исследовании содержание витамина A было ниже уровня здоровых коров на 12 % (P<0,05) и оставалось более низкой до конца исследований. Низкий уровень витамина A при кетозе отмечали в своих работах Самохин В.Т. (1981), Батанова О.В. (2008).

При этом содержание каротина в крови коров обеих групп до отела (при первом и втором исследовании) существенно не отличались между собой и не имели достоверных различий. Так, межгрупповые различия между опытной и контрольной группами при первом и втором исследовании составили меньше 3 %.

После отела (к третьему исследованию) концентрация каротина в сыворотке крови коров обеих групп снижалась и к четвертому исследованию концентрация данного показателя была выше в крови больных кетозом коров по сравнению с клинически здоровыми аналогами на 29 % (Р<0,05).

Увеличение концентрации каротина в крови больных кетозом коров при четвертом исследовании, вероятно, вызвано снижением образования витамина A из каротина, вследствие значительного уменьшения

синтетической функции печени, что подтверждается увеличением в этот период ОКТ, AcAc, НЭЖК, триглицеридов, диспротеинемией и снижением коэффициента ВН/AcAc.

2.2.4. Биохимический статус (белковый, углеводный, липидный и минеральный обмен) у телят, рожденных больных кетозом коров

Нарушение обмена веществ в любом организме сопровождаются, в первую очередь, изменением его биохимического статуса. Результаты исследования кетоновых тел и их фракций в крови телят представлены на рисунке 2.

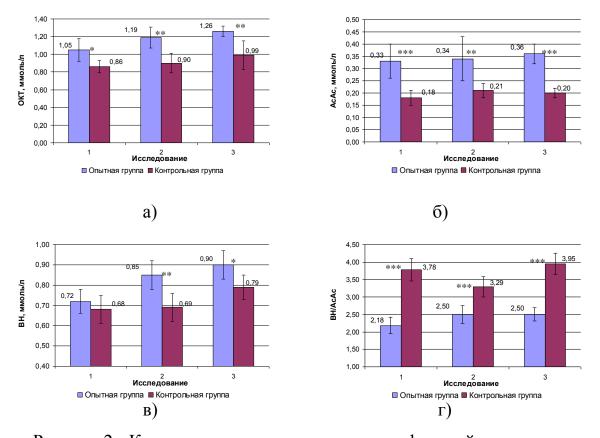


Рисунок 2 - Концентрация кетоновых тел и их фракций в крови телят. Примечание: а) общие кетоновые тела (ОКТ); б) ацетоуксусная кислота с ацетоном (AcAc); в) бета-оксимасляная кислота (ВН); г) коэффициент ВН/AcAc; достоверно по отношению к контрольной группе: *-при P<0,05, **-при P<0,01, *** -при P<0,001.

Из рисунка 2 видно, что уровень ОКТ в крови опытной группы телят, рожденных от больных кетозом коров, был значительно выше уровня аналогичного показателя у телят, рожденных от клинически здоровых коров

(контрольная группа). Так, при первом исследовании (третий день после рождения), концентрация ОКТ в опытной группе телят была на 28 % выше по сравнению с телятами, рожденными от здоровых коров (P<0,05), при втором – на 22 % (P<0,01), а при третьем – на 27 % (P<0,01).

Концентрация наиболее токсической фракции кетоновых тел — AcAc в крови телят опытной группы была многократно выше уровня данного показателя в крови контрольных телят в течение всего опытного периода. Среднегрупповые значение уровня AcAc в крови опытных телят, были достоверно выше аналогичных значений концентрации AcAc в крови телят контрольной группы при первом исследовании — в 1,8 раза (P<0,001), при втором — в 1,6 раза (P<0,01), а при третьем — в 1,8 раза (P<0,001).

Содержание ВН в крови телят опытной группы была выше концентрации аналогичного показателя контроля в течение всего периода исследований: при первом – на 6 %, при втором – на 23 % (P<0,01), при третьем – на 14 % (P<0,05).

Коэффициент ВН/АсАс в опытной группе телят был достоверно ниже значений аналогичного коэффициента контрольных телят: через 3 дня после рождения (первое исследование) – в 1,7 раза (P<0,001), через 10 дней после рождения (второе исследование) – на 32 % (P<0,001), спустя месяц после рождения (третье исследование) – в 1,6 раза (P<0,001).

Таким образом, нами доказано, что телята, рожденные от больных кетозом коров, имеют более высокую концентрацию кетоновых тел и более высокий уровень наиболее токсической их фракции — ацетона с ацетоуксусной кислотой, по сравнению с телятами, рожденными от клинически здоровых коров.

При первом исследовании в крови телят опытной группы содержание холестерина, триглицеридов и фосфолипидов было ниже соответственно на 19,6% (P<0,05), 34% (P<0,01), 17% (P<0,05), а НЭЖК, напротив, выше на 24% (P<0,01) относительно телят контрольной группы.

Однако исследуемые показатели у телят опытной группы, хотя и стремились к значениям контрольных телят, но к третьему исследованию, так и не достигли их уровня. К третьему исследованию содержание холестерина, фосфолипидов и триглицеридов в крови телят опытной группы было ниже уровня контроля на 17 % (P<0,05), 14,6 % (P<0,05), 6,8 % и составило соответственно 1,79 ± 0,19 ммоль/л, 1,01 ± 0,08 ммоль/л и 0,44 ± 0,02 ммоль/л. В тоже время, концентрация НЭЖК в крови опытных телят к третьему исследованию была больше в 1,4 раза (P<0,01) (0,47 ± 0,03 ммоль/л) относительно уровня контроля.

Таким образом, установленные нами уровни показателей липидного обмена при первом исследовании в крови телят, рожденных от больных кетозом коров и последующие изменения концентрации указанных показателей, свидетельствует о нарушении жирового обмена у данных телят в пренатальный период.

Уровень общего белка в крови телят опытной группы в течение всего исследования понижался и был выше аналогичного уровня контрольной: при первом исследовании на 11,4 % (P<0,05), втором — на 11 % (P<0,05) и третьем— на 3 %. В тоже время, концентрация общего белка в крови контрольных телят, на протяжение всего опыта достоверно не изменялась и колебалась в пределах $52,8\pm1,1$ г/л — $54,6\pm2,0$ г/л.

Нами установлено, что содержание гамма-глобулинов в крови телят опытной группы было достоверно выше аналогичного показателя контрольных телят в течение всего опытного периода за исключением первого исследования, при котором содержание гамма-глобулинов было выше в крови контрольных телят на 34 % (Р<0,05). Концентрация альфаглобулинов в крови телят обеих групп не имела, достоверны различий. При этом уровень альфа-глобулинов по периодам исследования был больше в крови опытных телят относительно контрольных: при первом исследовании на 33 %, при втором – на 7 % и при третьем – на 10 %. Содержание альбуминов и бета-глобулинов в крови телят обеих групп были выше

физиологических пределов, вместе с тем, колебания их не имели достоверных различий между собой.

В течение опытного периода содержание глюкозы в крови телят, рожденных от больных кетозом коров, было достоверно выше содержания данного показателя в крови телят контрольной группы, за исключением третьего исследования, при котором концентрация глюкозы была достоверно выше в крови контрольных телят.

Так, при первом исследовании уровень глюкозы в крови телят опытной группы был выше уровня контрольной — на 57 % (P<0,01), при втором исследовании — на 61 % (P<0,01). При третьем исследовании, как отмечалось выше, содержание глюкозы в крови контрольных телят превысило концентрацию анализируемого показателя опытных телят в этот период на 14,3 % (P<0,05).

Резкое снижение содержание глюкозы к заключительному исследованию (спустя месяц после рождения) в крови телят опытной группы при возросшей концентрации кетоновых тел, свидетельствует о глубоком нарушении обменных процессов в их организме.

Колебания щелочного резерва в течение всего периода исследований, как в опытной, так в контрольной группах не имели достоверных различий и находились в относительно не большом диапазоне, в опытной группе $20,98\pm1,76-22,3\pm2,39$ ммоль/л, в контрольной $-23,02\pm0,86-23,34\pm1,53$ ммоль/л. Однако среднегрупповые значения данного показателя были ниже в опытной группе телят относительно контрольной соответственно при первом исследовании на -11,2 (P<0,05), при втором -8 %, при третьем - на 4 %.

Содержание общего кальция и неорганического фосфора в крови телят обеих групп в течение всего исследования имело сходную динамику колебаний, при этом достоверных различий между группами нами не установлено.

Концентрация витамина А в крови телят опытной группы на протяжение всего исследования была ниже уровня аналогичного показателя контрольной.

Так, содержание данного витамина в крови телят опытной группы относительно контрольной было меньше при первом исследовании на 48 % (P<0,01), при втором – на 33 % (P<0,01), при третьем – на 36% (P<0,01).

2.2.5. Ранняя диагностика кетоза

Нами установлено, что некоторые биохимические показатели крови у больных кетозом коров имеют сезонную динамику изменений. Уровень глюкозы и щелочного резерва в крови коров снижался к концу зимнестойлового периода (первое и третье исследование) и повышался к его началу (второе исследование). Так, концентрация глюкозы в крови коров опытной группы была наибольшей при втором исследовании $(2,85 \pm 0,28 \text{ ммоль/л})$ и наименьшей при первом и третьем исследовании, что была ниже уровня второго исследования соответственно на 31 % (P<0,05) и на 27 % (P<0,05). Уровень щелочного резерва, также был максимальным при втором исследовании $(21,39 \pm 1,44 \text{ ммоль/л})$ и был выше уровня первого и второго — на 14,4 % (P<0,05) и на 22 % (P<0,01) соответственно.

Следует отметить, что уровень исследуемых показателей в крови коров опытной группы при втором исследовании достиг концентрации контрольных аналогов и не имел достоверных различий с ними. При этом значения уровня глюкозы и щелочного резерва в крови коров контрольной группы в течение всего периода исследований находились в пределах физиологических колебаний и не имели достоверных различий.

Таким образом, в начале зимне-стойлового периода у больных кетозом коров отмечается восстановление в крови уровня глюкозы и щелочного резерва до физиологических значений, а к концу зимне-стойлового периода вновь происходит их снижение.

Концентрация кетоновых тел и их фракций в отличии от ранее рассмотренных показателей, напротив, понижалась в крови опытных коров при втором исследовании, а повышалась — при первом и третьем исследовании. Так, концентрации ОКТ, AcAc, BH в крови коров данной

группы при втором исследовании были минимальными и соответственно составляли $1,02 \pm 0,09$ ммоль/л, $0,18 \pm 0,08$ ммоль/л, $0,81 \pm 0,07$ ммоль/л, что по сравнению с первым и третьим исследованием было ниже соответственно для ОКТ в 2,6 раза и в 2,8 раза; для AcAc — в 4 раза и в 3,8 раза; для BH — в 2,3 раза и в 2,6 раза.

Несмотря, на снижение концентрации данных показателей при втором исследовании до пределов физиологических колебаний, их уровень, попрежнему, был значительно выше аналогичных значений контрольной группы.

Коэффициент ВН/АсАс в обеих группах был максимальным при втором исследовании и минимальным при первом и третьем. При этом, значения данного показателя у коров опытной группы были ниже минимальных физиологических пределов и многократно ниже аналогичных значений контрольной при первом исследовании — в 3,1 раза (P<0,01), при втором — 2,55 раза (P<0,01) и при третьем — 2,58 раза (P<0,01).

Таким образом, в начале зимне-стойлового периода у больных кетозом коров концентрация исследуемых биохимических показателей не имела достоверных различий относительно здоровых аналогов, за исключением коэффициента ВН/АсАс значения которого были достоверно ниже в течении всего периода исследований.

Следовательно, определение коэффициента BH/AcAc в крови высокопродуктивных коров в начале зимне-стойлового периода позволяет выявить предрасположенных к кетозу коров.

2.2.6. Метод математического моделирования уровня кетоновых тел в крови у коров

Проведя факторный анализ результатов, как собственных исследований, так и литературных данных, нами установлены определенные закономерности между биохимическими показателями у клинически здоровых и больных кетозом коров.

На основе выявленных закономерностей нами был предложен способ математического прогнозирования уровня кетоновых тел в крови у коров по ранее известным значениям глюкозы крови и щелочного резерва сыворотки крови, а также разработана компьютерная программа экстраполяционного расчета кетоновых тел для ЭВМ (НЭТ).

2.2.7. Прогнозирование нарушения липидного обмена у телят, рожденных от больных кетозом коров

Для изучения взаимосвязей изменения биохимических показателей коровматерей и рожденных от них телят, нами было проведено сопоставление результатов исследований полученных во время второго и третьего научнохозяйственных опытов. Нами установлено, ЧТО между биохимическими показателями крови больных кетозом коров-матерей в последние месяцы стельности и до первых 10 дней после отела, выявлена обратная или более сильная корреляционная зависимость с аналогичными показателями, рожденных от них телятами по сравнению с группой здоровых коров и рожденных от них телят. Корреляционная зависимость некоторых биохимических показателей с наиболее высокой обратной или более сильной корреляционной связью в группах коров-матерей и телят представлена в таблице 4.

Из таблицы 4 видно, что у больных кетозом коров-матерей биохимические показатели крови и показатели обмена рожденных от них телят обладают отличной динамикой изменений. В то время как, у клинически здоровых коров-матерей и рожденных от них телят динамика изменения указанных показателей между собой сходна или отсутствует.

На основании выше изложенного можно сделать вывод, что установленное нами, в последний месяц стельности, превышение в крови коров-матерей уровня триглицеридов выше 0,69 ммоль/л, НЭЖК выше 1,24

Таблица 4 - Корреляционная зависимость некоторых биохимических показателей с наиболее высокой обратной или более сильной корреляционной связью в группах коров-матерей и рожденных от их телят

Показатель (коровы-матери/ рожденные	Корреляционная зависимость между телятами рожденными от		
от них телята	больных кетозом коров	здоровых коров	
ОКТ / Глюкоза	-0,99	+0,9	
ВН/АсАс / Щелочной резерв	-0,99	+0,92	
Триглицериды / Триглицериды	-0,83	-0,18	
НЭЖК / АсАс	+0,85	-0,09	

ммоль/л и ОКТ выше 1,89 ммоль/л, при одновременном снижении коэффициента ВН/АсАс меньше 3,3 может служить неспецифическим маркером нарушения жирового обмена у рожденных от них телят в ранний постнатальный период.

3. ЗАКЛЮЧЕНИЕ

На основании проведенных исследований нами были сделаны следующие выводы:

- 1. Синдромальная выраженность кетоза определяется его патогенетическими особенностями, зависит от концентрации кетоновых тел в крови коров и имеет определенную последовательность: ацетонемический > гастроэнтеральный > гепатотоксический синдром.
- 2. Ацетонемический синдром сопровождается незначительным снижением аппетита, учащением частоты дыхания, тахикардией, бледностью оболочек, наибольшим значением коэффициента ВН/АсАс слизистых $(2,78\pm0,25)$ ОКТ $(3,22\pm0,28)$ ммоль/л) И уровнем относительно гастроэнтерального и гепатотоксического синдромов.

- 3. Гастроэнтеральный синдром проявлялся в замедлении жвачки, снижением аппетита и гипотонией преджелудков, гипотонией кишечника, реже повышением его перистальтики и наличием в каловых массах слизи, Гастроэнтеральный неприятного (зловонного) запаха. синдром сопровождается промежуточным, относительно ацетонемического коэффициента BH/AcAc гепатотоксического синдромов, значением $(1,46\pm0,21)$ и уровнем ОКТ $(2,84\pm0,24 \text{ ммоль/л})$.
- Гепатотоксический 4. синдром сопровождается увеличением И смещением перкуторных границ печени, болезненностью области печеночного притупления. Слизистые оболочки анемичны с желтушным оттенком. Со стороны сердечнососудистой системы отмечается тахикардия, ослабление сердечного толчка и тонов сердца. Гепатотоксический синдром сопровождается наименьшим коэффициентом BH/AcAc (1,14±0,09) уровнем ОКТ (2,27±0,22 ммоль/л) относительно других синдромов.
- 5. Снижение значения коэффициента отношения кетоновых фракций ВН/АсАс ниже 4,5 в конце стойлово-выгульного (начале зимне-стойлового) периода, следует рассматривать как неспецифический маркер ацетонемического состояния при ранней диагностике и прогнозировании кетоза.
- 6. Показатели липидного, углеводного обмена у больных кетозом коров сопровождались:

перед отелом: увеличением уровня триглицеридов $(0,69\pm0,07 \text{ ммоль/л})$, холестерина $(2,82\pm0,26 \text{ ммоль/л})$, НЭЖК, АсАс (относительным) и уменьшением концентрации глюкозы $(1,15\pm0,09 \text{ ммоль/л})$, фосфолипидов, ОКТ, ВН, ВН/АсАс;

после отела: повышением содержания НЭЖК, ОКТ, AcAc, BH/AcAc и снижение концентрации глюкозы $(1,08\pm0,12 \text{ ммоль/л})$, BH (относительным), триглицеридов $(0,19\pm0,02 \text{ ммоль/л})$, холестерина $(2,35\pm0,21 \text{ ммоль/л})$, фосфолипидов $(0,64\pm0,06 \text{ ммоль/л})$ с последующим повышением их уровня через месяц после отела.

7. Белковый статус крови у больных кетозом коров сопровождается диспротеинемией в течение всего периода исследований, а именно:

в последние месяцы стельности снижением уровня общего белка $(82,2\pm2,7\,\text{г/л})$, бета-глобулинов $(15,53\pm1,25\%)$ и повышением альбуминов $(32,02\pm1,5\%)$, альфа-глобулинов $(8,42\pm0,88\%)$, гамма-глобулинов $(44,03\pm3,2\%)$;

после отела повышением альбуминов ($42,71 \pm 2,39$ %), альфа-глобулинов ($10,42 \pm 0,96$ %), снижение бета-глобулинов ($13,86 \pm 0,62$ %), гамма-глобулинов ($33,01 \pm 2,9$ %), а также уменьшением содержания общего белка ($79,0 \pm 3,5$ г/л) с последующим его повышением через месяц после отела.

8. Показатели витаминно-минерального обмена у больных кетозом коров сопровождались:

в последние месяцы стельности повышением концентрации общего кальция $(2,03\pm0,14\,$ ммоль/л), витамина A $(1,6\pm0,13\,$ мкмоль/л) и снижением неорганического фосфора $(1,42\pm0,09\,$ ммоль/л), при относительно стабильном уровне каротина $(6,71\pm0,52-6,89\pm0,37\,$ мкмоль/л);

после отела снижением витамина A $(0,71 \pm 0,05 \text{ мкмоль/л})$, каротина $(3,9 \pm 0,24 \text{ мкмоль/л})$ и повышением общего кальция $(2,22 \pm 0,13 \text{ ммоль/л})$, и значительным увеличением неорганического фосфора $(1,86 \pm 0,12 \text{ ммоль/л})$ с последующим уменьшением данных показателей через месяц после отела.

- 9. Биохимический статус крови у телят, рожденных от больных кетозом коров, после рождения характеризуется гипергликемией, кетонемией, диспротеинемией с более низким уровнем гамма-глобулинов и более высоким уровнем общего белка, а также отсутствием достоверных различий между показателями минерального обмена (общим кальцием и неорганическим фосфором) относительно телят рожденных от клинически здоровых коров.
- 10. Уровень кетоновых тел и их фракций в организме телят рожденных от больных кетозом коров характеризуется более высокими значениями, а фракционный состав кетоновых тел аналогично отражает их соотношение в

организме коров-матерей. При этом максимальный их уровня за весь период исследований отмечается через месяц после рождения и составляет: ОКТ – $1,26\pm0,06$ ммоль/л, AcAc – $0,36\pm0,04$ ммоль/л, BH – $0,9\pm0,07$ ммоль/л, коэффициент BH/AcAc – $2,5\pm0,19$.

- 11. Содержание холестерина, триглицеридов и фосфолипидов у телят, рожденных от больных кетозом коров, в течение всего периода исследований было ниже, а НЭЖК, напротив, выше относительно телят полученных от клинически здоровых коров.
- 12. Превышение в крови коров-матерей в последний месяц стельности уровня триглицеридов выше 0,69 ммоль/л, НЭЖК выше 1,24 ммоль/л и ОКТ выше 1,89 ммоль/л, при одновременном снижении коэффициента ВН/АсАс меньше 3,3, может служить неспецифическим маркером нарушения жирового обмена у рожденных от них телят в ранний постнатальный период.
- 13. Метод математического моделирования кетоновых тел в крови коров позволяет прогнозировать их уровень, по заранее известным значениям концентрации глюкозы и щелочного резерва.

Практические предложения

- 1. Для ранней диагностики кетоза коров в течение двух недель после постановки коров на зимне-стойловое содержание проводить оценку биохимического статуса по уровню в их крови глюкозы, щелочного резерва и кетоновых тел.
- 2. Использовать классификацию кетоза для объективной оценки этиологии, генеза и разработки, своевременных лечебно-профилактических мероприятий.
- 3. Концентрацию триглицеридов, НЭЖК, ОКТ и значения коэффициента ВН/АсАс в крови стельных коров за месяц до отела использовать как критерий-тест для диагностики и профилактики нарушения липидного обмена у рожденных от них телят.
 - 4. Для диагностики кетоза использовать метод математического

прогнозирования уровня кетоновых тел в крови у коров.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ Статьи в научных изданиях, рекомендованных ВАК РФ:

- 1. Эленшлегер, А. А. Показатели биохимического статуса у новорожденных телят в ОАО «Пригородное» / А.А. Эленшлегер, **А.В. Требухов,** Н. А. Пащенко // Вестник Алтайского государственного аграрного университета. 2014. №9 (119). С.90-93.
- 2. Эленшлегер, А. А. Некоторые биохимические показатели крови у коров при субклиническом кетозе / А.А. Эленшлегер, **А.В. Требухов,** О.Г. Казакова// Вестник Алтайского государственного аграрного университета.-2014.- №10 (120).- С. 96-99.
- 3. Эленшлегер, А. А. Особенности кетогенеза у больных субклиническим кетозом коров до и после отела / А.А. Эленшлегер, **А.В. Требухов,** О.Г. Казакова// Вестник Алтайского государственного аграрного университета.-2015.- №10 (132).- С. 75-78.
- 4. Эленшлегер, А. А. Показатели белкового обмена у телят, рожденных от больных кетозом коров / А.А. Эленшлегер, **А.В. Требухов,** Н. А. Пащенко // Вестник Алтайского государственного аграрного университета.- 2015.-№12 (134).-С.112-114.
- 5. **Требухов, А. В.** Некоторые показатели минерального обмена у больных кетозом коров // Вестник Алтайского государственного аграрного университета. 2016. №1 (135). С.108-110.
- 6. **Требухов, А. В.** Обмен веществ при кетозе и способы его коррекции // Аграрная Россия. 2016.-№11.-С.5-7.
- 7. **Требухов, А.В.** Взаимосвязь показателей белкового обмена больных кетозом коров и их телят // Ветеринария.-2016.-№9.-С.42-45.
- 8. **Требухов, А. В.** Белковый статус у больных кетозом коров // Вестник Алтайского государственного аграрного университета.- 2016.-№2 (136).- С.125-128.

- 9. **Требухов, А. В.** Липидный статус у больных кетозом коров // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова.- 2016.-№3 (44).-С.156-159.
- 10.**Требухов, А.В.** Экстраполяционный метод определения кетоновых тел в крови // Вестник Алтайского государственного аграрного университета.-2016.-№3 (137).-С.137-140.
- 11.**Требухов, А. В.** Некоторые показатели углеводного и жирового обмена больных кетозом коров и рожденных от них телят / А.В. Требухов, А.А. Эленшлегер // Ветеринарный врач. 2016. №5. –С.56-62.
- 12.**Требухов, А. В.** Динамика изменения некоторых показателей минерального обмена у телят, рожденных от больных кетозом коров // Вестник Алтайского государственного аграрного университета.- 2016.-№6 (140).-С.115-118.
- 13.**Требухов, А. В.** Показатели липидного обмена у телят, рожденных от больных кетозом коров // Вестник Алтайского государственного аграрного университета.- 2016.-№7 (141).-С.127-129.
- 14.**Требухов, А. В.** Взаимосвязь основных показателей минерального обмена у больных кетозом коров и рожденных от них телят / А. В. Требухов, А. А. Эленшлегер // Сибирский вестник сельскохозяйственной науки. 2016.- №5.—С.48-55.
- 15.**Требухов, А. В.** Показатели гомеостаза телят, рожденных от больных кетозом коров // Вестник Алтайского государственного аграрного университета.- 2016.-№12 (146).-С.100-103.
- 16.**Требухов, А. В.** Некоторые показатели биохимического статуса телят, полученных от больных кетозом коров // Вестник Бурятской государственной сельскохозяйственной академии им. В.Р. Филиппова.-2017.-№1 (46).-С.56-59.
- 17.**Требухов, А.В.** Клинико-биохимические аспекты кетоза у молочных коров // Ветеринария.-2017.-№10.-С.46-49.

- 2005612065 12.08.2005 18.Свидетельство $N_{\underline{0}}$ OT об официальной регистрации программы для ЭВМ «Нейросетевой экспресс-тест v.1.3 (НЭТ), выданное Федеральной службой по интеллектуальной собственности, №2005611460 16.06.2005. товарным знакам, заявка патентам Правообладатель: Требухов А. В. Автор: Требухов А. В.
- №2017660705 19. Свидетельство ОТ 25.09.2017 об официальной регистрации программы ЭВМ «Математический экспресс-тест ДЛЯ определения кетоновых тел в крови», выданное Федеральной службой по интеллектуальной собственности, заявка №2017616878 10.10.2017. ОТ Правообладатель: Требухов А. В. Автор: Требухов А. В.

Статьи, опубликованные в других изданиях:

- 20. **Требухов, А. В.** Биохимический и морфологический статус крови у коров при кетозе / А. В. Требухов, А. А. Эленшлегер // Актуальные проблемы ветеринарной медицины и биологии.—Оренбург,2003.— С.148-150.
- 21. **Требухов, А. В.** Сезонные изменения биохимического статуса у коров при субклиническом кетозе // Вестник Алтайского государственного аграрного университета.-2004.- №2 (14).- С. 58-60.
- 22. **Требухов, А. В.** Лечение и профилактика субклинического кетоза коров // Актуальные проблемы биологии, медицины и экологии: Сб. науч. тр. Томск, 2004. Т. 4, № 1. С. 69-70.
- 23. **Требухов, А. В.** Особенности сезонной динамики изменений параметров углеводного и жирового обмена у высокопродуктивных пород крупного рогатого скота/ Ал. В. Требухов, Ан. В. Требухов // XIII Международное совещание и VI школа по эволюционной физиологии: тез. докл. и лекций. СПб, 2006.- С.215.
- 24. **Требухов, А. В.** Изменение во фракционном составе кетоновых тел как фактор прогнозирования субклинического кетоза у коров // Вестник Алтайского государственного аграрного университета.-2007.- №8 (34).- С. 46-47.

- 25. **Требухов, А. В.** Взаимосвязь изменения некоторых показателей углеводного и жирового обмена при ацетонемических состояниях молочных коров/ Ал. В. Требухов, Ан. В. Требухов // Вестник Алтайского государственного аграрного университета.-2008.- №6 (44).- С. 60-61.
- 26. **Требухов, А. В.** Изменение некоторых биохимических показателей крови как фактор прогнозирования нарушения обмена веществ/ Ал. В. Требухов, Ан. В. Требухов // Юбилейная научно-практическая конференция: к 50-летию факультета ветеринарной медицины АГАУ, 100-летию со дня рождения д.в.н., профессора И.С. Ржаницыной. Барнаул: РИО АГАУ,2012.- С.109-110.
- 27. Эленшлегер, А. А. Морфологические и биохимические показатели у стельных коров в сухостойный период / А.А. Эленшлегер, **А.В. Требухов,** О.Г. Казакова// материалы Международной научно-практической конференции, посвященной 80-летнему юбилею и 55-летию научно-производственной деятельности д.с/х.н., профессора, заслуженного зоотехника РФ Виноградова И.И. Чита, 2014.- С. 125-127.
- 28. Эленшлегер, А. А. Динамика изменения морфологического статуса у новорожденных телят/ А. А. Эленшлегер, **А. В. Требухов,** Н. А. Пащенко // материалы Международной научно-практической конференции, посвященной 80-летнему юбилею и 55-летию научно-производственной деятельности д.с/х.н., профессора, заслуженного зоотехника РФ Виноградова И.И. Чита, 2014.- С. 127-130.

Монография:

- 1. Требухов, А. В. Кетоз молочных коров: монография/А.В. Требухов,
- А.А. Эленшлегер, С. П. Ковалев.–Барнаул: РИО Алтайский ГАУ, 2016.–123 с.

Методические издания:

1. **Требухов, А. В.** Диагностика, лечение и профилактика субклинического кетоза коров: методич. рекомендации.—Барнаул: Изд-во АЦНТИ, 2006.—21 с.

2. **Требухов, А. В.** Диагностика, лечение и профилактика кетоза коров: методич. рекомендации. – Барнаул: РИО Алтайский ГАУ, 2017. – 47 с.